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Abstract. This paper explains the coexistence of the displacive and the order–disorder features
of the ferroelectric phase transition in Sn2P2S6 crystals. Both have been observed in experiments.
The height of the potential barrier hindering the order parameter fluctuations, estimated from
experimental data, shows that the phase transition in Sn2P2S6 is actually very close to the theoretical
case of the order–disorder versus displacive crossover. Moreover, previously performed model
calculations can be used for the analysis of the temperature dependence of dielectric susceptibility
and other physical properties which do not obey the predictions of standard Landau theory.

1. Introduction

Although the two very basic pictures for structural phase transitions—those of the displacive,
soft mode driven phase transition and the order–disorder (o/d) phase transition—are intuitively
clear and seemingly exclusive concepts, the actual behaviour of real crystals or theoretical
models may often correspond to a less transparent intermediate case [1].

A good example of such an ambiguous case is realized in Sn2P2S6, as well as in related
isostructural compounds derived from Sn2P2S6 by substitution of Sn by Pb or S by Se [2, 3].
The crystal of Sn2P2S6 undergoes a second order phase transition from the paraelectric phase
to the ferrolectric phase atT = 337 K, while Sn2P2Se6 goes to the equivalent ferrolectric
phase through an intermediate incommensurate phase with stability limits fromT = 193 K
to T = 221 K. The phase diagram of the solid solutions of these compounds contains a rather
unique critical point; the Lifshitz point [4]. At the same time, the fortunate combination of
ferroelectricity with semiconducting properties makes these crystals very interesting from the
point of view of applications [5, 6].

Quite recently, several papers dealing with Sn2P2S6 and Sn2P2Se6 addressed the natural
question of whether the phase transition in these compounds follows the o/d or the displacive
scenario [7–14]. The spectrum of suggested answers is rather wide. The specific heat
measurements [7] on both compounds seem to clearly support the o/d concept, and the structural
model of Sn2P2Se6 by Israelet al [8] also seems to favour the o/d concept. On the other hand,
spectroscopic studies of Sn2P2Se6 by Eijt et al [9–11] seem to support a soft mode behaviour,
even though effects that ‘might be alternatively related to disorder’ are identified. Finally
Enjalbertet al [12] and Drobnich and Vysochanski [13] consider these compounds as ‘mainly
displacive with slight disorder effects’.
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The aim of this paper is to establish quantitatively the degree of o/d versus soft mode
behaviour in Sn2P2S6 type crystals. For this purpose, we first discuss the o/d versus soft
mode crossover for a simple theoretical model (in the next section). The crossover can
be characterized by the ratioUm/kBTc whereUm is the energy barrier on the trajectory of
the ferroelectric mode coordinate. In section 3, this energy barrier is determined from the
experimental data of Sn2P2S6. It turns out that the estimate obtained allows us to show that
the Sn2P2S6 type materials are close to the theoretical definitions of the o/d versus soft mode
crossover. Some of the consequences are discussed in section 4.

2. Theoretical analysis of the o/d versus soft mode behaviour

A simple model [1, 14–21], convenient for analysis of the o/d versus soft mode crossover, can
be defined by a potential acting on a set of classical particles, each with a single continuum
degree of freedomxi attached to a 3D lattice of discrete sitesi:

V =
∑
i

V (xi) +
1

2

∑
i

∑
j 6=i

Ci,j (xi − xj )2 (1)

that can also be expressed as

V =
∑
i

V ′(xi)−
∑
i

∑
j 6=i

Cij xixj . (2)

Following [14–21], we assume a symmetric anharmonic ‘2–4’ on-site potential

V (xi) = 1

2
Ax2

i +
1

4
Bx4

i (3)

with A < 0 andB > 0. The intersite harmonic coupling is limited to nearest neighbour sites
with C > 0 unless the opposite is stated explicitly. Since the essential effects of anisotropy
can be taken into account by rescaling of the force constants, the lattice is considered to be
cubic [1]. We expect this model to describe second order phase transitions in most uniaxial
ferroelectrics, except for the cases when the phase transition is at low temperature so that the
quantum effects have to be taken into account [1].

The ground state (and the equilibrium state at zero temperature) is a ferroelectric ordered
state with all particles at the (same side) bottom of the local double well:

xi = ± X X =
√
−A/B. (4)

A simultaneous shift of all the particles towards the opposite domain state (betweenxi = X and
xi = −X) corresponds to a large fluctuation of the zone centre (‘ferroelectic’) soft mode. The
energy barrier per site on this trajectory is entirely defined by the on-site potential (equation (3)):

Um = A2/(4B). (5)

On the other hand, the energy increase corresponding to an isolated ‘flip’ (betweenxi = X
andxi = −X) of a single particle inside the ordered domain can be expressed as

Uf = 12CX2 = 12
C|A|
B

. (6)

By an appropriate choice of units for energy and displacement [1, 14–16], the potential of
equations (1)–(3) can be put in a form where the only free parameter is the ratio of the two
characteristic energiesUf /Um = 3C/|A|. When this ratio is very small, the model displays
an o/d phase transition. In the opposite case, in the displacive limit, the phase transition can
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be described as freezing of the soft mode. The transition temperature itself may be expressed
through a dimensionless functionf (t):

kBTc = f
(
Uf

Um

)
CX2

Analytical methods were previously used to determine the phase transition temperatures in
these two limiting cases [1, 16–18]:

f (0)
.= 9.12 f (∞) .= 2.638. (7)

It is natural to ask for the position and sharpness of the ‘crossover’ between the two
asymptotic cases. Obviously, we expect that this crossover happens whenUf andUm are
of the same order of magnitude, but it would be convenient to have a more quantitative and
meaningful clear cut criterion. Two possibilities for such a criterion have been proposed
previously [15]. According to the first one, the crossover is put at the point where the diagonal
elements of the quadratic part of the potential change sign, i.e. when the on-site potential
V ′(x) in the ‘Ising’ expression of equation (2) just changes from a single well to a double well
profile. This condition corresponds toUf = 4Um . There is a related proposal based on an
assumption that the soft mode frequency extrapolated linearly to the phase transition would
vanish completely on the ‘displacive side’ of the crossover point [15]. Note that if this were to
hold exactly, it would imply a kind of phase transition with the ‘extrapolated soft mode gap’
as an order parameter, rather than a crossover situation. Nevertheless, this type of criterion
seems to be useful for the analysis of some numerical studies [15]. After all, according to
Padlewskiet al [15], such a criterion localizes the crossover at the same place as the former
criterion based on the form ofV ′(x), that is atUf = 4Um.

The second proposal consists in putting the crossover at the point wherekBTc = Um.
Obviously, if the energy fluctuations at the phase transition are much larger than the potential
barrier in the soft mode coordinate, oscillations over the barrier would take place that would
lead to soft mode behaviour. In the opposite case, soft mode like oscillations above the phase
transition are expected to be impossible and the particles would occupy only the bottoms of the
double wells. By interpolation ofkBTc data of [15] and [16], we have found that the second
proposal puts the crossover atUf ≈ 2.5Um .

Crossover positions related to the above proposals are shown in figure 1, together with
the plot of the ratiof = kBTc/CX

2 versusUf /Um. The discrete points correspond to the
Monte Carlo and molecular dynamic simulations taken from references [15], [16] and [21],
respectively. Note that the data can be rather well approximated by a heuristic formula

kBTc = CX2

[
f (0) + f (∞)

2
− f (0)− f (∞)

2
tanh lg

(
10CX2

Um

)]
(8)

with f (0) andf (∞) fixed by equation (7).
Since the difference between the two proposals is quite small, we will choose as the

relevant parameterkBTc/Um, since it is easier to obtain from the experimental data than
Uf /Um. Figure 2 shows a plot ofkBTc/Um versusUf /Um according to this model.

Finally, previous studies shed some new light on the Landau thermodynamic potential of
the model [15, 16, 19, 20]. It has been found that, at temperatures well out of the critical
region, the calculated free energy per site can be reasonably well approximated by the usual
expansion in the powers of the spatially averaged displacementx = 〈xi〉 as

U(T ) = α(T )

2
x2 +

β(T )

4
x4 +

γ (T )

6
x6 + . . . . (9)
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Figure 1. Reduced phase transition temperaturekBTc/Uf as a function of the ratio of characteristic
energiesUf /Um for the model defined in the text. Large circles: Monte Carlo simulations of
Radescuet al [16]. Small circles: molecular dynamics results of Padlewskiet al [15] and Schneider
and Stoll [21]. Continuum curve: phenomenological interpolation (equation (8)) between the two
asymptotic results (equation (7)) obtained by more exact methods. Vertical lines show theoretical
‘crossover positions’ defined in the text.

Figure 2. Relation between characteristic ratioskBTc/Um, better suited to the characterization of a
real crystal and ratioUf /Em more convenient when the theoretical model is introduced. Symbols
and continuum guide line have the same meaning as in figure 1.

Obviously, in the low temperature limit we find again the original microscopic potential given
by equation (3):

U(0) = A

2
x2 +

B

4
x4. (10)

The temperature dependence of the coefficients in equation (9) is, however, somewhat different
to the standard phenomenological ansatz. We will use here the following three important
conclusions that can be drawn form the investigations published in [15, 16, 19, 20]:
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(1) The coefficientα is a roughly linear function of the temperature below the phase transition,
and it can be approximated by (see figure 3 of Radescuet al [16])

α(T ) ≈ |α(0)|
(
T

Tc
− 1

)
T < Tc. (11)

(2) The coefficientα is also a roughly linear function of the temperature above the phase
transition but the slope is the same as belowTc only in the displacive limit. In the o/d
case the slope ofα(T ) is several times larger belowTc than above. This suggests a natural
explanation for the often observed deviations from the prediction of standard Landau
theory for the ratios of the Curie constants and soft mode slopes above and below the
phase transition.

(3) The coefficientβ(T ) is temperature independent only in the displacive limit. Calculations
performed in the o/d domain show thatβ decreases asTc is approached. This leads to
a temperature dependence of the order parameter that differs from the square root law
prediction of the usual Landau theory. The reduction of the value ofβ(T ) compared toB
in equation (10) may be so important that the sixth and higher order terms in the Landau
potential expansion may become necessary. This seems to be a natural explanation for
tricritical behaviour in many compounds, and may possibly even lead to a weakly first
order phase transition.

3. Energy barrier for the ferroelectric mode in Sn2P2S6

Let us now estimate the soft mode coordinate energy barrier in Sn2P2S6. We start with a
Landau expansion of the free energy density (per unit volume) in terms of the polarizationP :

U

V
= αP (T )

2
P 2 +

βP (T )

4
P 4 +

γP (T )

6
P 6 + . . .− EP. (12)

We assume that the Landau energy density of the real Sn2P2S6 crystal has the same properties
as those derived for the simple model discussed in the previous paragraph. Then at low
temperatures only the first two terms are relevant. This means that the barrier may be actually
approximated by the 2–4 potential, that is by the first two terms of the Taylor expansion allowed
by symmetry. Note that by this assumption we do not rule out the possible role of the sixth
order term in theLandau thermodynamical potential near the phase transition.

The saturated spontaneous polarizationPs is given by

P 2
s =
|αP (0)|
βP (0)

(13)

whereαP (0) < 0, βP (T ) > 0, and the Curie constant belowTc can be approximated using
equations (11) and (12) as

ε0C− = Tc/2|αP (0)|. (14)

From these relations, using the experimental values ofPs = 0.16 C m2 [22] and the Curie
constantC− = 7×103 (here the high frequency value ofC− is taken from figure 1 of the paper
by Grigaset al [23] in order to avoid contribution of domain walls [24]), we can estimate the
potential parameters as:

αP (0) = 2.7× 109 J m C−2 βP (0) = 1011 J m5 C−4. (15)

The energy barrier per active entity, one molecular unit of Sn2P2S6, is obtained as the product
of the potential barrier energy densityαP (0)2/4βP (0), and the corresponding volume (half of
the unit cell [2]):

Um = 1

2
Vunit cell α(0)

2/(4β(0)) ≈ 4× 10−21 J. (16)
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Alternatively, the energy barrier can be expressed using the low temperature limit of the
soft mode frequency, the atomic masses and the amplitude of the frozen displacements in the
ferroelectric phase. To this end, it is convenient to expand the free energy density (per unit of
mass) in terms of the normalized soft phonon coordinate

U

M
= αη(T )

2
η2 +

βη(T )

4
η4 + . . . . (17)

Here 2αη = 4π2ν2 is just the square of the saturated angular frequency of the soft mode. Since
the temperature dependence of the soft mode in Sn2P2S6, and its anticrossing with another
mode was rather thoroughly studied by Raman spectroscopy [9, 25, 26] and inelastic neutron
scattering [9, 11], the saturated low temperature frequency of the soft mode can be accurately
determined. The experimental value [9, 25] ofν ≈ 48 cm−1 leads to|αη(0)| ≈ 42 THz2.
The amplitude of the frozen phonon displacement in equation (17) can, in principle, be
calculated directly from the structural data at low temperatures. Unfortunately, at the moment
only the room temperature structural data [27] are available. These results show that the
soft mode eigenvector can be approximately regarded as a shift of the two Sn2+ ions in a
direction close to that of the spontaneous polarization, by 0.032 and 0.022 nm, respectively
[27]. The corresponding mass-averaged displacement at room temperature is about 0.014 nm.
Anticipating a further increase of the frozen phonon displacement with further lowering of
the temperature, we expectη(0) to be about 0.02 nm. This rather rough estimate gives
βη(0) ≈ 10 THz2 nm2. The energy barrier per molecular unit, obtained as product of the
mass of the Sn2P2S6 formula unit and the potential barrier energy density|αη(0)|2/4βη(0) :

Um = 1

2
Munit cell|αη(0)|2/4βη(0) ≈ 3× 10−21 J. (18)

Since both these values ((16), (18)) are close tokBTc = kB × 337 K = 4.65× 10−21 J,
we conclude that the ratiokBTc/Um for a Sn2P2S6 crystal is close to unity. Thus, this crystal
is actually a prototype for an o/d versus soft mode crossover system.

4. Discussion and conclusion

The estimation of the energy barrier in the Sn2P2S6 allows us to establish the realization
of the o/d versus displacive crossover in this material in a quantitative manner. The
closeness to the theoretical definitions of the crossover enables us to understand seemingly
contradictory conclusions of recent investigations [7–13], although more detailed analyses
would be necessary for detailed interpretation of the related experimental results.

Still, there is a certain number of consequences that might be immediately derived from
the value of the potential barrier:

(1) The crossover situation actually implies that the compound should reveal a soft mode,
which, however, does not soften completely, and is actually observed in experiment [9,
11, 25, 26].

(2) From the molecular dynamics simulation performed for the simple model in the
corresponding regime [15], it follows that the ratio of the soft mode temperature
dependence is betweenR = 2.7 andR = 9.5, depending on the actual form of the
dispersion (the case ofR = 2.7–3 corresponds to the unrealistic case of infinitely long
range interactions whileR = 8–9.5 corresponds exactly to the nearest neighbour model
so far considered.) This again agrees with the experimental estimateR = −7.5± 2.5
from the inelastic neutron scattering study of Eijtet al [9, 11].
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(3) As the conditionkBTc ≈ Um corresponds to the caseUm ≈ 4CX2, we may estimate
the interaction constantC ≈ αη(0)/16. Usingαη(0) of equation (17), we get quite a
small value ofC ≈ 2.6 THz2, which is in perfect agreement with the experimental result,
showing that the dispersion curves in all three directions are very flat (change of the
frequency along dispersion of the x-polarized mode is within the 5 per cent, except for the
regions where obvious mixing with acoustic branches takes place) [11].

(4) The Monte Carlo (MC) simulations performed on the model atUm ≈ 1CX2 and
Um ≈ 10CX2 showed a clear jump of the slope of the temperature dependence of the
Landau expansion coefficientα(T ) (see figure 3 of Radescuet al [16]). This would
lead to a nonstandard ratio of the Curie constants below and above the phase transition
(C−/C+ = 4 and 10, respectively.) Since the value of the barrier in Sn2P2S6 places
this system between the two model situations, it seems natural to claim that it is the o/d
crossover that is responsible for the large value ofC−/C+ ≈ 9 observed experimentally
[23].

(5) Using the results of the above mentioned MC simulations, it can also be claimed that
the quartic coefficient of the Landau potential for Sn2P2S6 should be considered as
temperature dependenton the temperature scales comparable withTc. Reduction of its
value atTc should be significant, by a factor of 10 at least, so that the sixth-order term in the
Landau expansion really may play an important role in the vicinity ofTc, as anticipated
by phenomenological theory [28]. This suggests that the crossover behaviour is most
probably responsible for all ‘tricritical’ features of the Sn2P2S6 phase transition.

(6) The temperature dependence of the quartic term itself is sufficient to produce a nonstandard
temperature dependence of the spontaneous polarization. According to the above
mentioned MC simulations, the ‘pseudo-critical’ coefficientβ in

Ps = K(T − Tc)β (19)

fitted to experimental data in the region of about 0.5Tc–0.95Tc should give a value
between 0.26 and 0.33 (see figure 6 of Radescuet al [16]. Note that this essentially
means that saturation is achieved faster than would be expected for a usual displacive
phase transition. In this way the crossover effect contributes to the enhancement of the
pyroelectric coefficient dPs/dT [5].

Finally, the reason why we did not provide an analogous estimate of the energy barrier in
Sn2P2Se6 is because the experimental data are less transparent—neither the Curie constant in
the ferroelectric constant, nor the saturated frequency of the ferrolectric mode can be estimated
with the same precision as in Sn2P2S6. Nevertheless, it is clear that the energy barriers in
both compounds are of the same order of magnitude. It may perhaps be somewhat lower in
Sn2P2Se6, since the phase transition temperatures are also lower. Moreover, the presence of
the intermediate incommensurate phase itself is probably more important for the actual soft
mode versus o/d behaviour. To analyse this point, a detailed analysis of the o/d versus soft
mode crossover in the DIFFOUR (discrete frustratedφ4) model [29] would be highly desirable.
The merit of such a study, which is currently under development, should be a description of
the tricritical features of the phase transitions in the mixed Sn2P2SxSe6−x system in a model
withoutad hocassumptions on the form and temperature dependence of the Landau potential.
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